Commit 86376e27 authored by Francisco Jesús Acién Pérez's avatar Francisco Jesús Acién Pérez
Browse files

updating README

parent b4e2384d
Pipeline #1275 passed with stage
in 4 seconds
......@@ -49,4 +49,8 @@ To see the project page execute `hugo server`.
## Adding media
If you have to add some pictures on your page, drop then on `static/projects/YOUR_PROJECTNAME/`. In your page, they can be accessed by `/YOUR_PROJECT_NAME/SOME_NICE_PIC.jpg`.
If you have to add some pictures on your page, drop then on `static/projects/YOUR_PROJECTNAME/`. In the post on `/content/projects/YOUR_PROJECTNAME.md`, they can be accessed by `SOME_NICE_PIC.jpg`. For exaple:
```
![Logo pic of ewetasker](logo.png)
```
baseurl = "https://ea4rct.org/"
baseurl = "http://www.gsi.dit.upm.es/software/"
title = "GSI Project Dashboard"
theme = "whiteclub"
languageCode = "es"
......
......@@ -58,4 +58,4 @@ demos:
BigTweet is an agent-based social simulator for rumor spreading models and rumor control strategies in Twitter with support for Big Data technologies.
![Screenshot](/projects/big-tweet/BigTweetGUI.png)
![Screenshot](BigTweetGUI.png)
......@@ -22,7 +22,7 @@ github: https://github.com/gsi-upm/gsicrawler
gitlab: https://lab.gsi.upm.es/gsicrawler/gsicrawler
docs: http://gsicrawler.readthedocs.io/en/latest/
demo: http://gsicrawler.cluster.gsi.dit.upm.es/
logo: http://gsicrawler.readthedocs.io/en/latest/_static/logo-gsi-crawler.png
logo: /projects/gsicrawler/logo-gsi-crawler.png
pypi: ~
docker: https://hub.docker.com/r/gsiupm/gsicrawler/
......
......@@ -61,7 +61,7 @@ Representation of Animated Multitudes in ENvironments.
RAMEN is an agent-based social simulation visualization tool for indoor crowd analytics based on the library Three.js. It allows to visualize a social simulation in a 3D environment and also to create the floor plan of a building.
![lab](/projects/ramen/lab_gsi_example.png)
![lab](lab_gsi_example.png)
## Architecture
......@@ -72,4 +72,4 @@ RAMEN is divided in three main modules:
* Visualization module: it manages the final result of the visualization on the browser.
![arch](/projects/ramen/architecture.png)
![arch](architecture.png)
......@@ -72,4 +72,4 @@ Scaner uses data from Twitter to do several tasks as:
To do so, Scaner provides an API REST to easily manage data and periodically calculate metrics of users and tweets.
![scaner](/projects/scaner/architectures.png)
![scaner](architectures.png)
......@@ -68,7 +68,7 @@ Simulations can be defined in three different ways. First, using behavioral mode
## Arquitecture Description
![arch](/projects/seba/SEBAarquitectura.png)
![arch](SEBAarquitectura.png)
## SEBA Components
......
......@@ -64,7 +64,7 @@ Sefarad environment is divided in modules, each one is focused in one concrete t
* Visualisation, the main function of this module is to represent data which were processed and draw different charts to visualize interesting data. This visualisation is structured in several dashboards, which are web pages oriented to display all the collected information . In addition, these dashboards are divided in other components (Polymer Web Components) that globally compound the dashboard itself.
* [ElasticSearch][0], represents the persistence layer of the project and stores all the amount of data needed for the visualisation.
![Sefarad](/projects/sefarad/sefarad.png)
![Sefarad](sefarad.png)
As shown in the architecture, Serafad is also capable to retrieve semantic data from external sources, such as Fuseki or DBPedia.
......@@ -83,7 +83,7 @@ DBpedia is a crowd-sourced community effort to extract structured information fr
This dashboard provides a graphic interface to ask SPARQL queries against DBpedia.
![Sefarad](/projects/sefarad/dbpedia.png)
![Sefarad](dbpedia.png)
### Tourpedia
......@@ -94,7 +94,7 @@ TourPedia provides two main datasets: Places and Reviews. Each place contains us
This dashboard also allows you to ask SPARQL quereies against our TourPedia database.
![Sefarad](/projects/sefarad/tourpedia.png)
![Sefarad](tourpedia.png)
### Financial Twitter Tracker
......@@ -103,14 +103,14 @@ Financial Twitter Tracker is an R&D project of GSI Group that contains informati
This dashboard provides interactive Web Components to visualize people's opinion polarities and also has a SPARQL editor to ask queries about these opinions using RDF specifications.
![Sefarad](/projects/sefarad/ftt.png)
![Sefarad](ftt.png)
### Footballmood
Footballmood is an application developed for sentiment analysis of football in Twitter. This dashboard provides interactive Web Components to visualize people's opinion polarities and also has a SPARQL editor to ask queries about football players against DBpedia.
![Sefarad](/projects/sefarad/footballmood.png)
![Sefarad](footballmood.png)
### Aspects
......@@ -118,6 +118,6 @@ Aspects dashboard is an analyser developed for aspects sentiment analysis of res
The data used for the dashboard is the Semeval 2015 ABSA dataset (Task 12) for restaurant domain, available [here](http://alt.qcri.org/semeval2015/task12/)
![Sefarad](/projects/sefarad/aspects.png)
![Sefarad](aspects.png)
[0]: http://elastic.co
......@@ -62,12 +62,12 @@ Sematch is an integrated framework for the development, evaluation, and applicat
In text analysis applications, a common pipeline is adopted in using semantic similarity from concept level, to word and sentence level. For example, word similarity is first computed based on similarity scores of WordNet concepts, and sentence similarity is computed by composing word similarity scores. Finally, document similarity could be computed by identifying important sentences, e.g. TextRank.
![logo](/projects/sematch/sematch-motivation.jpg)
![logo](sematch-motivation.jpg)
KG based applications also meet similar pipeline in using semantic similarity, from concept similarity (e.g. `http://dbpedia.org/class/yago/Actor109765278`) to entity similarity (e.g. `http://dbpedia.org/resource/Madrid`). Furthermore, in computing document similarity, entities are extracted and document similarity is computed by composing entity similarity scores.
![kg](/projects/sematch/kg.png)
![kg](kg.png)
In KGs, concepts usually denote ontology classes while entities refer to ontology instances. Moreover, those concepts are usually constructed into hierarchical taxonomies, such as DBpedia ontology class, thus quantifying concept similarity in KG relies on similar semantic information (e.g. path length, depth, least common subsumer, information content) and semantic similarity metrics (e.g. Path, Wu & Palmer,Li, Resnik, Lin, Jiang & Conrad and WPath). In consequence, Sematch provides an integrated framework to develop and evaluate semantic similarity metrics for concepts, words, entities and their applications.
......@@ -66,7 +66,7 @@ The simulations are configured by declaring one or more types of occupants, with
## Arquitecture Description
![Soba](/projects/soba/arquitectura.png)
![Soba](arquitectura.png)
### SEBA Components
......
......@@ -58,6 +58,6 @@ demos:
Soil is an Agent-based Social Simulator in Python focused on Social Networks.
![Soil](/projects/soil/soil.png)
![Soil](soil.png)
There are mainly two parts in a simulation: agent classes and simulation configuration. An agent class defines how the agent will behave throughout the simulation. The configuration includes things such as number of agents to use and their type, network topology to use, etc.
......@@ -67,7 +67,7 @@ Some of the applications we have developed are sentiment and emotion analysis fo
Soneti has a modular architecture and we differentiate three main services, as we can see in the image.
![Soneti](/projects/soneti/soneti.png)
![Soneti](soneti.png)
* **Ingestion tool:** This module is called **GSICrawler** and is responsible for obtaining data from different sources, whether they are newspapers or social networks. For more information about this module or to add new data sources visit the documentation on http://gsicrawler.readthedocs.io
......
......@@ -21,7 +21,7 @@
<div class="col-3 box-logo">
<a href="{{ .Permalink | relURL }}">
<img src="{{ if .Params.logo}} {{ .Params.logo }} {{ else }} {{ .Site.Params.logo }} {{ end }}">
<img src="{{ if .Params.logo }} {{ if or (hasPrefix .Params.logo "http://") (hasPrefix .Params.logo "https://")}} {{ .Params.logo }} {{ else }} {{ .Params.logo | relURL }} {{ end }}{{ else }} {{ .Site.Params.logo | relURL }} {{ end }}">
</a>
</div>
......
......@@ -36,7 +36,7 @@
<div class="row card-row">
<div class="col card-col">
<div class="card card-project">
<img class="card-img-top" src="{{ if .Params.logo}} {{ .Params.logo }} {{ else }} {{ .Site.Params.logo }} {{ end }}" alt="Card image cap">
<img class="card-img-top" src="{{ if .Params.logo }} {{ if or (hasPrefix .Params.logo "http://") (hasPrefix .Params.logo "https://")}} {{ .Params.logo }} {{ else }} {{ .Params.logo | relURL }} {{ end }}{{ else }} {{ .Site.Params.logo | relURL }} {{ end }}" alt="Card image cap">
<div class="card-body text-center">
{{- if .Params.github }}
......@@ -120,7 +120,7 @@
{{ $relatedPages = $relatedPages | append . }}
<div class="col-auto mb-3" style="width: 18rem;">
<div class="card">
<a href="{{ .RelPermalink }}"><img class="card-img-top" src="{{ if .Params.logo}} {{ .Params.logo }} {{ else }} {{ .Site.Params.logo }} {{ end }}" alt="Card image cap"></a>
<a href="{{ .RelPermalink }}"><img class="card-img-top" src="{{ if .Params.logo }} {{ if or (hasPrefix .Params.logo "http://") (hasPrefix .Params.logo "https://")}} {{ .Params.logo }} {{ else }} {{ .Params.logo | relURL }} {{ end }}{{ else }} {{ .Site.Params.logo | relURL }} {{ end }}" alt="Card image cap"></a>
<div class="card-body">
<a href="{{ .RelPermalink }}"><h5 class="card-title">{{ .Title }}</h5></a>
......@@ -144,7 +144,7 @@
{{ range . }}
<div class="col-auto mb-3" style="width: 18rem;">
<div class="card">
<a href="{{ .RelPermalink }}"><img class="card-img-top" src="{{ if .Params.logo}} {{ .Params.logo }} {{ else }} {{ .Site.Params.logo }} {{ end }}" alt="Card image cap"></a>
<a href="{{ .RelPermalink }}"><img class="card-img-top" src="{{ if .Params.logo }} {{ if or (hasPrefix .Params.logo "http://") (hasPrefix .Params.logo "https://")}} {{ .Params.logo }} {{ else }} {{ .Params.logo | relURL }} {{ end }}{{ else }} {{ .Site.Params.logo | relURL }} {{ end }}" alt="Card image cap"></a>
<div class="card-body">
<a href="{{ .RelPermalink }}"><h5 class="card-title">{{ .Title }}</h5></a>
......
<nav class="header-site navbar navbar-expand-lg navbar-light" role="navigation" style="box-shadow: 0px 4px 3px rgba(0, 0, 0, .5) !important; border-top: 30px solid #00a9e0 !important;">
<div class="container">
<a class="logo navbar-brand" href="{{ "/" | relURL }}"><img src="/gsi-logo.png"></a>
<a class="logo navbar-brand" href="{{ "/" | relURL }}"><img src="{{ "/" | relURL }}/gsi-logo.png"></a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
......
......@@ -138,25 +138,25 @@ h1 {
}
#div-image-1{
background-image: url("/ASS-image.png");
background-image: url("/software/ASS-image.png");
}
#div-image-2{
background-image: url("/BDA-image.png");
background-image: url("/software/BDA-image.png");
}
#div-image-3{
background-image: url("/NLP-image.png");
background-image: url("/software/NLP-image.png");
}
#div-image-4{
background-image: url("/LWDT-image.png");
background-image: url("/software/LWDT-image.png");
}
#div-image-5{
background-image: url("/IWS-image.png");
background-image: url("/software/IWS-image.png");
}
#div-image-6{
background-image: url("/OTROS-image.png");
background-image: url("/software/OTROS-image.png");
}
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment